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visager sont" 

modulo une translation T k (en effet exp (2zciK + k .  T o 
= + 1) d'oO" 

~m[(K _+ k ) .  e~] = 

Z~I(AO exp ( -  2~iK + k .  1:~)o:.i-- l[~m(K +_ k)]. 

ZeJ(AO = + 1 suivant que A¢ est un op6rateur ou un anti- 
op6rateur. Les quantit6s Z~I(Ad exp ( -  2zciK + k .  x~) 
forment une repr6sentation F h une dimension du 
groupe Ge/Tk (Tk: noyau de Fkj ). 

Par cons6quent si on choisit des vecteurs K et k 
(c'est-/t-dire le r6seau magn6tique et son orientation 
dans le r6seau cristallographique), quand le groupe 
magn&ique d6crit (TM, G), F engendre un sous-groupe 

du groupe des repr6sentations de dimension un de 
6elrk. 

Ce qui pr6c6de montre bien qu'on ne peut pas d6- 
finir la somme de deux groupes magn&iques associ6s 
h deux 616ments distincts de (T,G) et poss6dant des 
r6seaux magn&iques diff6rents. 
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A new method is presented for the extraction of the weighted periodic vector set from the Patterson 
function. The method depends on the determination of a generalized polynomial which approximates 
the Patterson function. The coefficients of this polynomial indirectly establish the weighted periodic 
vector set. The method is completely independent of symmetry and the resolution of the Patterson 
function. In practice, the value of the results obtained is indirectly limited by the number of atoms per 
unit cell. 

It is now well-known that a weighted periodic vector 
set (Buerger, 1959) can be associated with the Patterson 
function of an arbitrary crystal. In many Patterson 
methods of structure analysis, the Patterson function 
is regarded as a rather blurred representation of the 
weighted periodic vector set. In the following discus- 
sion, weighted periodic vector sets will be referred to 
simply as periodic vector sets. For a crystal containing 
N atoms per unit cell, the periodic vector set consists 
of N periodic weighted images of the crystal structure. 
The essence of the phase problem lies in the separation 
of the various points of the periodic vector set into 
these images. This separation can be accomplished for 
periodic vector sets by the image-seeking method of  
Buerger (1959). Tokonami & Hosoya (1965) have also 
developed a procedure for unravelling periodic vector 
sets, and their method depends explicitly on certain 
periodic characteristics of the periodic vector set. These 
considerations indicate that, if the weighted periodic 
vector set could be determined from the Patterson func- 

tion in some way, the crystal structure could be ob- 
tained, at least in principle, by means of the above 
vector-set methods. 

The problem of recovering the periodic vector set 
from the Patterson function has been approached 
mainly via Patterson sharpening procedures, but these 
methods do not appear to be capable of yielding the 
periodic vector set in general cases. This communica- 
tion presents a preliminary account of a new method 
for the extraction of the periodic vector set from the 
Patterson function. The method is based on the theory 
of approximation in generalized polynomials (Cheney, 
1966). It provides an approach which can be applied 
to the problems of crystal-structure analysis in several 
different ways, but this note will deal only with the 
most straightforward of these, which involves the Pat- 
terson function. 

For simplicity, the case of a Patterson function pro- 
jected onto some crystal axis will be considered first. 
An expansion of its Fourier coefficients shows that the 
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Patterson function consists of a superposition of per- 
iodic bell-shaped functions which, following Kitai- 
gorodskii (1961), will be called interatomic functions. 
This calculation can be found in Kitaigorodskii (1961) 
or Lipson & Cochran (1966). The point at which a 
given interatomic function attains its maximum value 
will be called its interatomic function parameter. Let 
K be the number of kinds of interatomic functions in 
the crystal, and let Nj denote the number of interatomic 
functions of the j t h  kind. Let Iq (x -  x~) denote the pth 
interatomic function of the qth kind, where x~ is its 
interatomic function parameter. Then the Patterson 
function can be written exactly as 

K Nq 
P ( x ) =  C S Iq (x -x~) .  (1) 

q = l  p----1 

The problem of extracting the periodic vector set from 
the Patterson function consists of the determination of 
the interatomic function parameters x~. These corre- 
spond to weighted points in the periodic vector set. 
The essential difficulty is that the Patterson function 
is a non-linear function of the xg. 

The interatomic function parameters can be obtained 
indirectly by replacing O<x<a/2  by a discrete set 
0 < xl < x2 < . . .  x9 < a/2, where a is the unit-cell dimen- 
sion for the Patterson projection being used. We then 
consider the generalized polynomial 

,, o I d x -  x~) + Iq(x + x~) 
X X Nap l_(_-d(O,x-o)+fi(a/Z,x~), A(x)=q= ~=1 (2) 

where fi(i,j) is, as usual, the Kronecker delta. In (2) 
as in (1) Iq(x-x!o) denotes an interatomic function of 
the qth kind. 

The coefficients N~ in (2) are now to be determined 
in some way so that A(x) will in some useful sense be 
a 'good' approximation to P(x). Ideally, the Ng would 
be defined as the number of interatomic functions of 
the qth kind in ½(x~-i + x~) < x < ½(x~ + x~+l); this will 
be called the node-integral criterion. The N~ would 
then give all the interatomic function parameters ex- 
cept for a translational error which can be made arbi- 
trarily small by choosing D sufficiently large and, in 
fact, lim A(x~)=P(xj). However, in practice, the N~ 

D---~oo 

have to be defined in some way which permits their 
calculation from P(x), and there are several possi- 
bilities for this. One attractive approach is to determine 
the N~ so that A(x) is a Tchebycheff (or minimax) 
approximation to P(x). In this note, however, the 
simpler interpolatory criterion A(xj)=P(x~) will be 
used, so that the N~ are obtained as the solution of 
the linear system of equations 

1, D I d x j -  xp) + Iq(xj + x~) 
p(xj)=q__~ 1 _r Ng 1 +fi(O,x~)+fi(a/2,xp) ' p----1 

j - - 1 , 2 • . . D .  (3) 

It can be shown that the interpolating functions satisfy 
the Haar condition (Cheney, 1966) so that the inter- 
polation problem (3) always possesses a unique solu- 
tion. The Ng obtained from (3) then provide an ap- 
proximation to the number of interatomic functions 
of the qth kind in ½(xp-1 + xp) < x < ½(x~o + x~+l). 

In calculating the values of P(x~), the observed struc- 
ture amplitudes are first placed on an accurate absolute 
scale, and a correction for thermal vibration is applied 
so that the resulting data correspond to a stationary- 
atom crystal• The elements of the coefficient matrix 
can then be calculated from the scattering factors by 
Fourier summation• To obtain a practical solution of 
(3), the coefficient matrix must be non-singular, but 
more than this, the system must be reasonably well- 
conditioned• The coefficient matrix may be considered 
as exact except for round-off errors, but if the system 
of equations is ill-conditioned, very small changes in 
the P(xj) will produce disastrously large changes in the 
solution• The system (3) is always non-singular on ac- 
count of the Haar condition on the interpolation func- 
tions. However, the conditioning of the system depends 
on the divisional spacing and the 'sharpness' of the 
interatomic functions• For the purposes of this note, 
it is sufficient to state that, for a stationary-atom crys- 
tal, a minimum divisional spacing of 0.25 A provides 
an acceptable approximation (2) and yet leads to a 
reasonably well-conditioned system (3). Consequently 
the order of the system of equations would be approx- 
imately twice the unit-cell edge, so that a 40 A unit-cell 
edge would require a system of order 80. The solution 
of a system of this size can be obtained in a few minutes 
on a modern computer. 

A simple example will serve to illustrate the use of 
the system (3). To keep the coefficient matrix small 
(for reasons of space) a crystal with a 6 A unit-cell 
edge, and containing only one kind of atom, is con- 
sidered. The crystal contains three atoms with frac- 
tional coordinates xl = 0/22, x2 = 4/22, x3 = 7/22, so that 
the structure is non-centrosymmetric. Absolute scale, 
stationary-atom structure amplitudes were computed 
(to one decimal place) within the Mo limiting interval. 
Then, using a system of equally spaced divisional points 
0.272 A apart, the system (3) is 

-62"8 80"1 46.9 . . .  0"1~ 
40.1 86"3  51.1 0.4 
23"5 51.1 67"5 0"7 
11"0 28.1 42.5 0"6 
4.8 13.4 25.0 0"8 
2"4 6"3 11.9 1.5 

0.8 2"1 3.1 4.8 
0.6 1"5 1"9 11"0 
0"7 1"0 0"9 23.5 
0.4 0.8 1.0 40.1 
0"1 0.8 1"4 62"8 

-N1 - 
N2 

N12 m 

- 8 6 4 . 1  737• 
657• 
604• 
531• 
424. 

= 298. I (4) 240. 
140. 

85. 
51. 

_ 3 9 .  
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The elements of this system are presented in rounded 
form, but of course the actual construction of the sys- 
tem is done in multiple-precision arithmetic using a 
digital computer. The solution vector of the system (4) 
is (rounded to four places) 

(3.0004, - 0"0003, - 0"0005, 0"9997, 1.0002, 0.0002, 
- 0"0002, 1"0002, - 0"0001, 0"0000, 0"0005, - 0"0001), 

which is in excellent agreement with the correct solution 

(3,0,0,1,1,0,0,1,0,0,0,0).  

Several characteristics of this approach to the prob- 
lem of extracting the vector set from the Patterson 
function are immediately apparent. The resolution or 
lack of resolution of the Patterson function makes no 
difference to the system (3). Similarly, non-centro- 
symmetric crystals are no more difficult to treat than 
centrosymmetric ones. Crystals containing several 
kinds of atom can be handled without difficulty by 
the system (3), although a rather elaborate divisional 
scheme must be employed to avoid ill-conditioning. 
The generalization to two or three dimensions offers 
few difficulties in principle, but the system of equations 
becomes very much larger. 

Some forty one-dimensional calculations have been 
conducted using non-centrosymmetric artificial 'crys- 
tals' containing several kinds of atom. These involved 
unit-cell edge lengths of up to 42 A with as many as 
300 atoms (with no heavy atom) per unit cell. The 
structure amplitudes were specified to one decimal 
place. In all cases, the resulting N~ values provided a 
good approximation to the true vector set, and the 
experience gained has indicated that this method offers 
considerable hope of providing a practical method for 
the accurate extraction of the vector set from the Pat- 
terson function. The essential difficulty associated with 
the method presented here is that the accuracy with 
which the N~ obtained from (3) approximate to the 
node-integral Ng depends on the locations of the inter- 
atomic functions relative to the divisional points. Thus 

the calculation (4) is useful as an example, but is un- 
realistic in that the interatomic functions in P(x) were 
situated exactly on the divisional points, and this will 
not occur in practical cases. When the interatomic 
functions are situated exactly on the divisional points, 
the N~ will be very nearly integral, as in the example 
calculation, so that the vector set will be well defined, 
even though there may be many interatomic functions 
at any given divisional point. It is worth noting that, 
at least in principle, coincidences in the vector set offer 
no difficulty to the Tokonami-Hosoya deconvolution 
procedure. However, when the interatomic functions 
are not situated on the divisional points, the N o provide 
a less accurate approximation to the node-integral N q p" 

Thus, for complex structures, the vector set may not 
be defined with sufficient accuracy for the deconvolu- 
tion procedure. In order to increase resolution, it would 
be desirable to use a very large number of closely 
spaced divisional points, but this cannot be done on 
account of ill-conditioning of the system (3). This 
problem can be resolved in several ways. For example, 
the interpolatory criterion used in (3) can be replaced, 
for the approximation (2), by the Tchebycheff criterion, 
with the result that the powerful methods of linear and 
integer programming can be applied. Although this 
considerably increases the complexity of the method, 
very large systems of divisional points can be employed, 
so that the resolution with which the vector set is deter- 
mined is greatly increased. This work will be described 
in later papers. The effect of errors in the observed 
structure amplitudes has not yet been studied in detail. 
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